

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: COMPUTER ORGANIZATION & ARCHITECTURE Course & Branch: MCA

(25MC9102)

Year & Sem: I-MCA & I-Sem Regulation: R25

UNIT –I Basic Structure of Computer, Machine Instructions and Programs

1	a)	Explain the functional units of a computer with a neat diagram.	[L2][CO1]	[6M]
	b)	Differentiate between single processor systems and multiprocessor systems.	[L4][CO1]	[6M]
2	What is bus structure? Explain the types of buses with examples.			[12M]
3	a)	Represent the following decimal numbers in binary, octal, and hexadecimal (i)125 (ii)587.	[L2][CO1]	[6M]
	b)	Write short notes on instruction sequencing with an example.	[L3][CO1]	[6M]
4	a)	Explain different addressing modes with examples.	[L2][CO1]	[6M]
	b)	Create an algorithm for performing multiplication of two numbers and represent the process graphically with a flowchart	[L6][CO1]	[6M]
5	a)	Explain basic input/output operations with suitable diagrams.	[L2][CO1]	[6M]
	b)	What is the difference between CPU and I/O buses?	[L1][CO1]	[6M]
6	Discuss different types of addressing modes in 8086 with examples.		[L2][CO1]	[12M]
7	a)	Compare zero, one, two, and three-address instructions with examples.	[L2][CO1]	[6M]
	b)	Develop an 8086 program to add two 16-bit numbers.	[L6][CO1]	[6M]
8	Define Data transfer instructions and Input/output instructions.		[L1][CO1]	[12M]
9	Explain conditional and unconditional transfer instructions with suitable examples.		[L2][CO1]	[12M]
10	a)	List two advantages of multiprocessors.	[L1][CO1]	[6M]
	b)	Draw and explain the architecture of Intel 8086 microprocessor.	[L1][CO1]	[6M]

UNIT –II Arithmetic, Basic Processing Unit

1	a)	Define signed numbers. Give an example of addition of two signed numbers.	[L1][CO2]	[6M]
	b)	Divide the binary number `101101` by `110` using the restoring division method.	[L4][CO2]	[6M]
2	a)	What is a fast adder? Why is it required in computer systems?	[L1][CO2]	[6M]
	b)	Distinguish between hardwired control and microprogrammed control.	[L4][CO2]	[6M]
3	a)	Write two differences between integer division and floating-point division.	[L3][CO2]	[6M]
	b)	What is the role of the bus in a multiple-bus organization?	[L1][CO2]	[6M]
4	a)	Explain the design of a carry-lookahead adder with a neat diagram.	[L2][CO2]	[6M]
	b)	What are the basic steps in the execution of a complete instruction within a CPU?	[L1][CO2]	[6M]
5		cuss signed-operand multiplication with an example. Compare it with unsigned ltiplication.	[L2][CO2]	[12M]
6	a)	With a diagram, explain the execution of a complete instruction in a basic processing unit.	[L2][CO2]	[6M]
	b)	Evaluate the following operations using signed numbers (i) $(+45) + (-25)$ (ii) $(-65) + (-20)$.	[L5][CO2]	[6M]
7	Des	scribe the structure and working of a multiple-bus organization.	[L2][CO2]	[12M]
8	a)	Differentiate between hardwired control and microprogrammed control with advantages and disadvantages.	[L2][CO2]	[6M]
	b)	Compare the following positive numbers using the shift-and-add algorithm: (i) 1101×1011 (ii) 1010×0111	[L2][CO2]	[6M]
9		cuss the multiple-bus organization in a basic processing unit. Why is it preferred it single-bus architecture?	[L2][CO2]	[12M]
10	Des	scribe floating-point representation. What is the role of mantissa and exponent?	[L2][CO2]	[12M]

UNIT –III The Memory System

1	a)	What is Semiconductor RAM? Explain its meaning, types, and working principle with examples.	[L1][CO3]	[6M]
	b)	Explain ROM and describe one of its applications in computer systems.	[L2][CO3]	[6M]
2	a)	List two differences between cache and virtual memory.	[L1][CO3]	[6M]
	b)	What factors determine memory speed?	[L2][CO3]	[6M]
3	a)	What is secondary storage? Give examples.	[L1][CO3]	[6M]
	b)	Explain SRAM and DRAM with diagrams.	[L2][CO3]	[6M]
4	Wh	at are the different types of ROM? Explain their working principles and applications	[L1][CO3]	[12M]
5	a)	Discuss the relationship between speed, size, and cost of memory.	[L2][CO3]	[6M]
	b)	Explain cache memory mapping techniques.	[L2][CO3]	[6M]
6	a)	Write short notes on: (i) Page fault (ii) Hit ratio.	[L3][CO3]	[6M]
	b)	Define cache hit and cache miss.	[L1][CO3]	[6M]
7	a)	Compare and contrast SRAM and DRAM in terms of speed, cost, and usage.	[L2][CO3]	[6M]
	b)	Define EEPROM. Explain its full form, working principle, and applications.	[L1][CO3]	[6M]
8	_	plain the concept of virtual memory with a neat diagram. How is address aslation done?	[L2][CO3]	[12M]
9	a)	Explain the internal organization of DRAM with a diagram.	[L2][CO3]	[6M]
	b)	Differentiate between static and dynamic RAM.	[L2][CO3]	[6M]
10	Dis	cuss memory management requirements in multiprogramming environments.	[L2][CO3]	[12M]

Course Code: 25MC9102

UNIT -IV

Input/output Organization

		<u> </u>		
1	a)	What is an interrupt? Give one example.	[L1][CO4]	[6M]
	b)	Write two advantages of Direct Memory Access.	[L3][CO4]	[6M]
2	a)	What is the role of an interface circuit in I/O organization?	[L1][CO4]	[6M]
	b)	Write short notes on: (i) Programmed I/O (ii) Isolated I/O	[L3][CO4]	[6M]
3	a)	Explain different ways of accessing I/O devices.	[L2][CO4]	[6M]
	b)	What is the role of device controller?	[L1][CO4]	[6M]
4		blain the organization and working of a DMA controller. Discuss its advantages in h-speed data transfer.	[L2][CO4]	[12M]
5	Dis	cuss various types of buses in detail. Explain bus arbitration methods.	[L2][CO4]	[12M]
6	a)	Write an essay on standard I/O interfaces.	[L3][CO4]	[6M]
	b)	Compare speed and application areas of different I/O Interfaces.	[L2][CO4]	[6M]
7	a)	Distinguish between synchronous and asynchronous data transfer with examples.	[L2][CO4]	[6M]
	b)	What is meant by Polling in I/O operations?	[L1][CO4]	[6M]
8	a)	State the function of a status register in accessing an I/O device.	[L1][CO4]	[6M]
	b)	List three types of data transfer methods between CPU and I/O devices. Briefly describe each.	[L1][CO4]	[6M]
9		plain the various steps involved in handling an external interrupt by a processor. strate with a timing diagram.	[L2][CO4]	[12M]
10		cuss the functions of system buses in data transfer with neat diagram.	[L2][CO4]	[12M]

UNIT –V Pipelining, Large Computer Systems

1	a)	Define instruction pipelining.	[L1][CO5]	[6M]
	b)	What is a data hazard? Give an example.	[L3][CO5]	[6M]
2	a)	List two forms of parallel processing.	[L1][CO5]	[6M]
	b)	What is an interconnection network in multiprocessors?	[L3][CO5]	[6M]
3	a)	Describe two advantages of array processors.	[L2][CO5]	[6M]
	b)	Explain the basic concepts of pipelining with a neat diagram.	[L2][CO6]	[6M]
4	a)	Discuss different types of data hazards. How can they be resolved?	[L2][CO6]	[6M]
	b)	What is an instruction hazard? Explain with examples.	[L1][CO6]	[6M]
5	a)	Describe the structure of a general-purpose multiprocessor.	[L2][CO6]	[6M]
	b)	Explain the organization and working of array processors with neat diagrams.	[L2][CO5]	[6M]
6	Explain the role of interconnection networks in large computer systems. [L2][COO			[12M]
7	With diagrams, explain the performance benefits and limitations of instruction [L2][CO6] [pipelining.			[12M]
8		plain the concepts of branch hazards and branch prediction. How do delayed nch and branch predictor designs mitigate control hazards?	[L2][CO6]	[12M]
9		ssify in detail the different types of interconnection networks. Compare their formance.	[L4][CO6]	[12M]
10	a)	Write an essay on different forms of parallel processing.	[L3][CO6]	[6M]
	b)	Compare SIMD and MIMD architectures.	[L2][CO6]	[6M]

Prepared by: K G PONNAMBALAM ASSISTANT PROFESSOR MCA